Chapter 15 Written Homework Problems
 DUE: April 21st at the beginning of class
 SHOW ALL WORK FOR FULL CREDIT

1. The displacement of a wave is given by $y=2.1 \cos (0.32 x+0.52 t)$. What is the waves (a) amplitude, (b) wavelength, (c) period, (d) speed, and (e) direction of propagation? Take x measured in cm and t in seconds.
2. On a spring of mass m and length L_{1} transverse waves propagate at a speed v_{1}. When the spring is stretched further to a length L_{2} the waves propagate at a speed v_{2}. What is the spring constant of the spring in terms of these variables?
3. The standard for tuning orchestral instruments uses the frequency of the note A above middle C which is 440 Hz . A steel piano wire that is $38.9-\mathrm{cm}$ long and has a mass of 3.00 g is tuned to its fundamental frequency of 440 Hz . (a) What is the tension in the wire? (b) What is the highest harmonic that could be heard by a person who is capable of hearing frequencies up to 20 kHz ? (c) What percentage change in tension would be required to raise the fundamental frequency from A above middle C to B-flat above middle C (B-flat $\sim 466 \mathrm{~Hz}$)?
4. For the piano wire in problem 3 , assumed now to be tuned to A above middle C, what is the maximum power that can be transmitted on such a wire if the wave amplitude is not to exceed 1% of the wavelength?
5. A source emits 0.1 W of spherical waves into a uniform perfectly transmitting medium. What is the wave intensity 1 meter from the source?
6. A uniform cable of length L is hung from horizontal beam. (a) Find the speed of waves on the cable as a function of the distance from the bottom of the cable, y. (b) How long does it take waves to propagate up the cable in terms of L ? Suppose the cable is 5.0 m in length and weighs 50 N . (c) What is the speed of transverse waves at a distance $L / 3$ and a distance $2 L / 3$ from the bottom of the cable? (d) How do the relative wave speeds in these locations compare to the relative tensions in the cable in these locations? Explain.
